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STRONG INTERACTION ON A PLATE WITH CONSIDERATION

OF SLIP AND NEAR-WALL TEMPERATURE JUMP

A. A. Bogacheva, V. S. Galkin

We will solve the problem of the motion of a perfect gas in a

laminar boundary layer on a semi-infinite flat plate at zero angle

of attack, taking into account the slip and Jump of gas temperature

at the wall and the strong interaction between the boundary layer

and a hypersonic inviscid flow. It is assumed that the viscosity

coefficient p linearly depends on temperature T, Prandtl number Pr - 1.

In order to calculate pressure P we used the method of tangent wedges.

The slip and near-wall temperature Jump is taken into account by

linearization of the solution of the relatively well-known self-similar

solution with the usual boundary conditions of "adhesion" * (no slip).

We will examine the case of an insulated plate and the case of a. cooled

(Tw < TO) plate (plate temperature Tw = constant, To is stagnation

temperature of the free-stream flow, i.e., the temperature of the

insulated plate).

* We are concerned with a self-similar solution for a strong
interaction of zero order in the nomenclature of Hayest work (7].
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This statement of the problem was used earlier in Shidlovskiy's

work [1] for the case Tw - To. Calculations were conducted at a value

of the specific heat ratio x - 1.4 and x - 5/3, and the solution of

the zero-approximation equation was found by interpolation of the well-

known Falkner-Skan solution tables for other values of the parameter

entering into this equation. Obviously, mistakes were made during

this interpolation which led to qualitatively false conclusions: slip

increases pressure P and the boundary-layer displacement. thickness 6,

whereas the nature of its effect on the local coefficient of frictional

drag Cf depends on the magnitude of x. In-this work equations of the

zero and first approximations were solved simultaneously in the elec-

tronic computer which, incidentally, allowed us to refine the data of

works [2], [3] for a strong interaction without regard to the rare-

faction factors. The results of the calculations for x - 1.4 and

x = 5/3 show that when Tw K To, slip and temperature Jump decrease P,

6, Cf and especially the heat-transfer coefficient from the gas to the

plate.

1. We will examine motion in a laminar boundary layer on a plate

under conditions of strong interaction of the boundary layer with a

inviscid flow. A strong interaction occurs [4] when M2 (d6/dx)a > 1,

where M. is the free-stream Mach number, x is the coordinate along the

plate. In addition, magnitudes of the order ?Z2 must be negligibly

small in comparison with unity (we assume that the magnitude 2/(x - I)

is not one of the determining parameters when evaluating orders of

magnitudes, i.e., 2/(x - 1) - 1). Otherwise strong interaction

occurs at the leading edge of the plate being passed by a flow with

MW >> 1, where the rarefaction effects, caused by slip and gas tem-

perature Jump on the plate, and the entropy effects, caused by
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vorticity of the Inviscid flow on the outer edge of the boundary-

layer flow, can be particularly significant.

The investigation of these effects car. be facilitated since we

can study them individually by means of boundary-layer equatiors, [1],

[5]-[7], while appropriately changing the boundary conditions, since

the effects of rarefaction and vorticity are small, approximately of

order one. Actually, let the terms of the boudary-layer equation be

of the order of unity. Then these rarefaction effects are maximum

in a case of strongly heated plate [5] when they are of the order of

6/x. The order of magnitude of entropy effects is equal (7] to

In the zero approximation magnitudes of the order of 5/x and

higher are disregarded. Here, the boundary-layer equations have a

self-similar solution. Terms of the order of 6/x are taken into

account in the first approximation. By virtue of their smallness we

can linearize the problem with regard to the zero approximation,

i.e., we can investigate individually the effects of rarefaction and

vorticity, while appropriately changing the boundary conditions for

boundary-layer equations.

Therefore, when investigating the effects of rarefaction the

boundary conditions on the outer edge of the boundary layer remain

the same as in the zero approximation: the velocity at the edge of

the boundary layer is u - u total enthalpy H6  u•/2, i.e., the

temperature T6  0. The boundary conditions of slip must be fulfilled

on the plate [8]

"1,•x 2--a u_. ,y = 2x 2--a a*
2 Pa am ,. ..X+1 -- )
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where a is the speed of sound, p is the density, a is the accomodation

coefficient, a is the reflection coefficient. The term ( I/-) (i/pT)

(ýTAx), negligible within the limits of applicability of the bound-

ary-layer equations is discarded in the formula for slip velocity.

When solving the problem we will look for the dependence of

pressure on x in the form of P* - P/P. - PoXx-1/a(1 + dx-1/4), since

in the zero approximation P* - x-1/2, and the correction, caused by

rarefaction is of the order of 6/x -V x--/4. Here coefficient Po and

small parameter d are subject to determination, X, = X when x - 1,

X -= MD Rel/2, Re. = ux/v, v = L/p. We will introduce now (gener-

alizing [1]) the dimensionless dependent and independent variables by

the following formulas:

H 's fy'.Iq
-=P Vt. (1.2)

We will note that the self-similar motions depend only on X.

Using variables (1.2) in boundary conditions (1.1), when X - 0 we

obtain

• V' j l'. AG =bMGL. o 2/_Iz. J"!... (u.)I/6 (1.3)

where, obviously, I is the small parameter of the problem under con-

sideration. Using further variables (1.2) in boundary-layer equation,

we will reduce them by the usual method for boundary-layer theory, to

~ - - ta -

S+

+• (,-/ I V,• '--1 )'L (I + dx - 'I ], )( 1 .4 )
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Here the terms of the order of d2 and higher are discarded.

In order to obtain a system of zero-and first-approximation

equations from system (1.4), we will introduce the coefficient k by

the relationship c"xc-1/4 = k$; moreover we set

V (.% -) I T Q.) + 0 G %, o) = go, N• + 09,+ (k).

Substiuting these formulas into relations (1.3), (1.4) discarding

at first terms of the order of $, and then of the order of Pm as com-

pared to unity, we obtain a system of equations and boundary con-

ditions corresponding to them in zero and first approximations.

qP'+q(P+P(g8-qP')=0, i.gr=O,

P(O) V.(o) =o. g,(o)= TrTro. :=1; (1.5)

•"' + q" + (I -2 3 )w'C'4. Pcg = k [I'q,, + .1 (g.- F')].

g, + (wg)'- - kg,.

.(D)=- 0, v (O)= 9"t(0). g1 (O) = bg (O) i)=g(oo)=O, (1.6)

n- 2 do.
2

In order to solve system (1.6) it is necessary to express k in

terms of unknown functions. For this we use formula P* = x [(x + 1)/2]

M• (d5/dx) 2 , yielded by the method of tangent wedges where the bound-

ary-layer displacement thickness is

SI S

(physically this method of calculating pressure is Justified because

when calculating an inviscid flow with an error of approximately

(6/x) 2 we can disregard flow through the layer, the boundary-layer

thickness can be identified with the displacement thickness, and we

can consider the outer edge of the boundary layer as a solid wall.
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Using these formulas we will find

~'x (ftX-t

P' i/ _(X+t)i_ 1.7)
'V 2 7,. 1 P. 1. k

0 0

2. In order to simplify the problem we will assumes generalizing

ll], that

=,'+hSz�. g,1 .g.- +kg.

By means of (1.5) we will reduce relation (1.6) to the form

2 (2.1)

g" + (•pg) - - g.
g, + ,Pgy(2.2)

z) =(oo)=O. 0, g(00co) -$ g •.)(0).'

Taking (1.5) into account we have the following solution of Eq.

(2.2):
L,+ + + (-,.+ •) L,+:(o) + g.. 0, +.:O .=;,. ( 2.3)

Here
k = -- 4 (T./To)171o- 414.-', !4 =(-- 2y'z) A.

In order to simplify Ia we will integrate termwise Eq. (2.1).

Then

1,- ,,"(01 .-r .'(0) - (1.!2) 1, - lim (1qz). (2.4)
1.-r,,n~

S. . . . . . + - . , +, , + . ,



From the obvious finite condition of I1 and z, (0) the magnitude

e = lim (qz).must also be finlfte. This is especially clear in a case

of an insulated plate when

therefore for the existence of this integral it is necessary that

where m is a certain constant..

In order to determine thL=• value of e and the magnitude of g' (0)

we will investigate the conduct of functions z, & in the vicinity of

X = M, and we will examine on]My the principal terms of the correspond-

ing asymptotic expansions. SiKnce

goR go (0) exp

then the principal terms of th-ne items of function & are

D (I-- gm,(o)+ r(0) . D =const.. (2.5)

Let us substitute expres.-;ion (2.3) instead of & into the right-

hand side of Eq. (2.1). Then.. when p = X - m, pt = 1 this equation

with the usual substiutions f=r such an equation reduces to a Whittaker

equation. The principal termEý= of solution of a corresponding similar

"equation are
D, D2 (A,. .

the principal terms of a partMal solution of a nonsimilar equation are

g. (o) + o(0) A m"exp [ - M)]

2 (%.-- A) -- 2

where Df and D2 are arbitrw~y constants, A and n are known constants.

It follows from these exppressions that the solution is not unique

since the boundary conditions when X = m are satisfied at any values
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of ge (0). It follows, however, that from physical considerations the

thickness of total enthalpy loss be fJnite
co am

A (uj/u)(I -()d.% = B-kOSg,'dX,
S S

where B is the finite magnitude. It follows from this1 with con-

sideration of (2.5), that the magnitude of A will be finite only when

g' (0) -ga (0). Assuming g' (0) = -ga (0) and taking into account

that D2 = 0, follows from the finite condition e we obtaint a - 0,

functions & and z when X -+ w tend toward zero with respect to the

exponent and Eq. (2.1) as the final result takes the form

e+z' +(I -2P) z= A.--) + W" +

+'g b- 1 zo (2.6)

At last, after several transformations, taking into account

formulas (1.7), we obtain

6/ 6I1[mv' (I - 8ýý If 7/M..). P, = P.X (I - P, jfilm.).

C, = (2/p.&?) (Cu,/),.C, Xa/,.•'l ,;' (I - C1, IfZM.),

st .- (karl@),. p..u..c, (T.-- - StoX".M' (I - st1 1/kIM,,).
c,. = JfP•p(0). st. 1~~/4--g(0) (I- TI, J 1.- ,

6,= -- 3/4kT, P, - kT, k = - 43 (9.31, - 4z' (0) - 4qp (0)) './Tr

2-_ 1/" .-X (X_- ) T.

S4aV P. To

C - - S 2T 9= (0)
C, 4 y (0) g (0)

When estimating the limits of applicability of these formulas

we must remember that the small parameter of the problem is 4 -

M y . We note that the coefficient Cf in this statement of the

problem becomes nonintegrable (see also [1], [53).

-.8-
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Equations (1.5) and (2.6) with corresponding boundary conditions

were solved simultaneously on an electronic computer for a - a in the

range 0 < 8 with a maximum error of<A 1.10-4 for values of the

magnitudes q)" (0), go (0) and A < 1 0 -s for values of magnitude z' (0).

During the calculations it was revealed that the solution of a

first-approximation equation is very "sensitive" to the solution of

zero-approximation equations. Tables 1-4 and Figures 1-3 show some

rounded-off (to save space) results of the calculations. The data in

Table 4 was computed for a = a = 1. The data in Table 3 differs

*somewhat from the corresponding data of Li and Nagamatsu [2], [3]

mainly due to the magnitude Io. For instance in the latter study [3]

with % = 1.4, values are given of Io = 1.322, 0.9703, and 0.5956,

respectively for Tw/To = 1, 0.6, and 0.2. The assumption of the

presence of such errors [2], [3] was stated before ((7], P. 359). In

Figs. 1-3 the solid lines correspond to data when TwAo = 1, the dashed

lines when Tw/To = 0.6, the dot-dash lines when Tw/To = 0.2, C, = 41.

The magnitude a), is introduced by formula
T/To = G -- u'/u. = g -- 4p" -+ 0 (g, -- 2q)'') = coo + 0%o.

In the case of an insulated plate, the slip increases the gas

velocity (especially in the near-wall portion of the boundary layer)

and decreases the gas temperature which is minimum in the middle of

the boundary layer (in this case co, = 2qp't'). A reduction of Tw/To

increases the role of the near-wall temperature Jump. In the near-

wall part of the boundary layer C' somewhat decreases, cui sharply

increases in the main part of the boundary-layer, which leads to an

increase of gj. The presence of extremes of these magnitudes is

mainly because 91 increases from 0 to 1 when X changes from 0 to c

and ý, decreases correspondingly from value of .(0) = q" (0)to a
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value 0. (o) - 0.

Slip and near-wall temperature Jump decrease the pressure, dis-

placement thickness, local coefficient of friction drag and, espe-

cially, the heat-transfer coefficient from gas to plate. This effect

decreases with a decrease of the ratio Tw/1ro.

Analogous conclusions in the case of an insulated plate have been

obtained by means of an integral form of equation of momenta in

Galkints study [5] (velocity profile in boundary layer is linear) and

in Takano's work [6] (velocity profile is a fourth-degree polynomial),

while in the latter only the correction for pressure due to slip when

x = 1.4 was calculated. In case Tw/To = i w•hen x = 1.4, according to

our data and others [5], [6] we have respectively: Pi = 0.312, 0.20,

0.315, 51 = 0.23, 0.15, Cf1 = 0.34, and 0.21. Hence, representing

the velocity profile as a fourth-degree polynomial is sufficiently

accurate. A linear velocity profile can be used only for very simple

approximate estimations of the slip effect, especially in a case of

such flows about insulated thin bodies of finite thickness (for

instance, a wedge), when in the zero approximation motion is not self-

similar.

The authors are grateful to A. A. Nikol'skiy, V. P. Shidlovskiy,

and M. N. Kogan for a discussion of the results of this study.
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TABLE 1

x 1,4

TWI. I T.,/T. Z- 0.6 TrT.-0.2

0.1 0,075 0, 034 1O.067I 0, 6-0 "1,os o05 s 0 059 31 .
0.2 1),147 0, ItA 0,1:2 0,,',O 0,076 0,116 0,2791 0.0,0,3 0,21Gj 0,097 t,V.P 5 (0,o',! (1, o 12 0.,t73 0,318f01 5
0,4S 0,2821 it, -27 u•.2',51; 0~i,| rI .1.7 0, 2-lJ 0. 358 0.•,
0.5 0,3.... 0, 154 0i.,3!6 0,701 0, 1-, 1 0,2%1 0,397 0. IM
0,6 0.4,05 0,178 0,7,73: 0,721 0_110 0,338 0,436 0,216
0,7 u,462 0,201 0.4.127 0.740 (0, I18 0,39.) 0,474 0.245
0,8 0,516 0,220 )0, 480 0 7i,') 0, 262 0,411 0,512 0,271
0,9 0,.. (0,237 I0,529 0,779 0.281 0,489 0,519 0.2-4
1.0 0,614 0, 250 0,576 .,797 0.o3 I2 0,536 0,585 0.313
1,2 0,698 0,266 0,662 0, l<2 0,326 0, 623 0,655 0,34 0
1.4 0,770 0,2268 0,757 0.,)5 0,333 0,700 0,719 0,352
1,6 0, 82!) 0,-56 o0,&) O,~b:ol 0,3'25 0,763 0,777 0,346
1,8 0,8711 0,234 0, b52 0,9:9 0, 202 0,824 0,828 0,327
2.0 0,912 0,204 0.893 0,9;9A 0,269 0,871 0.871 0,296
2.4 0,9MI 0,136 0,919 0,970 0,187 0,936 0,933 0.216
2,8 0,984 0,076 10,9791 0,987 0,1l9 0,972 0,970 0.130
3.2 0.994 0,036 0,902 0,. -5 0,54 0,989 0,988 0,067
4,0 0,0999 0,004 0,999 1,0,0 0, Os 0, 99 0,999 o,0oo
5,0 1,000 0,000 i 1,000 1,0(0 0,000 1,000 1,000 0,000

TABLE 2

r. " I-l To/T - 0.6 i - /, ' -I 0,[ , I.6.

0,1 0,683 0,03310,073 0,621 0,040' 1,2 0,735 0,231 0,692 0,836 0,306
0,2 0,163 ]0,0C5 0, 144 0,•.1 0,078, 1,4 0,803 0,226 0,761 0,868 0,307
0.3 0,238 0,W9# 0,9212 0,6C2 0,14 1,6 0,857 0,211 0,824 0,897 0.294
0,4 0,310 0,120 0,277 0, 62 0,14-8 1,8 0,899 0,188 0,872 0,922 0,2C8
0,5 0,377 0,145 0,340 0,7T3 0,1791 2 0 0,930 0,160 0,909 0,942 0.234
0,6 0,440 0,1 C610,399 0,72..3 0o208, 2:4 0,970 O0,101 0 958 0,971 0,157
0,7 0,499 0,485 0,75 0,7'3 0,2332 2,8 0 ,099 0,054 0,081 0,988 0,088
0,8 0.55y 0,201 0,509 0,763 0,255.' 3,2 0,990 0,024 0,99-1 0,995 0,042
0:9 0,605 0,213 0,560 0,7.2 0,274 1 4,0 1,6).0 0,003 0,999 1,000 0,0$5
1,.0 o,.53 022210,607 0,oso 0,289,' 5,0 1,000 0.000 •,000 1,000 0•000

' IiTABLE 3

Tjr. S() 1 1 10 Po. t.

1 0,7627 0 1,309.3 0,5091 0,7340 0,5442 -
--1,4 0,6 0,6775 0,2025 0,9407 0,3657 0,6222 0,4007 0,1531

0,2 0,5S83 10,3046 0,5592 0,2174 0,4797 0,2743 0,1150
0,01 0,55443 10,4817 0,3728 0,1449 0,3917 0,2072 0,0926

, I 0854 10 o24 0,9089 8527 0,8146 -
0,6 0,7429 10,20631 0,8764 0,6532 1 0,7229 0,6004 0,208

rz'D-"T -63-304./1+2+4 -11.-



TABLE 4
• rr Roo) -4• ps cf. ah s0:676 0,3. O,671 0,312 0,14 0,344 -

06 ,31 0,37 0,28 .0,17 0 O,2M 1,925
0,2 0,398 0,338 0,107 0,01i 0,006 j 0.5w
1. 0, 'M 0,62 0,334 0,251 0 0420 -

0, 6 0,406 0,531 0,238 0,178 | 0,42 ,3-

V7 - .X44

45-

45

44

'4)1

'4

42 4

1. ah

Fig.

4,f "4,'

Fig. .2. Fig. 1.
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